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Abstract: Analyses of longitudinal data with non-linear mixed-effects models (NLMEM) are typically
associated with high power, but sometimes at the cost of inflated type I error. Approaches to overcome
this problem were published recently, such as model-averaging across drug models (MAD), individual
model-averaging (IMA), and combined Likelihood Ratio Test (cLRT). This work aimed to assess seven
NLMEM approaches in the same framework: treatment effect assessment in balanced two-armed
designs using real natural history data with or without the addition of simulated treatment effect.
The approaches are MAD, IMA, cLRT, standard model selection (STDs), structural similarity selection
(SSs), randomized cLRT (rcLRT), and model-averaging across placebo and drug models (MAPD). The
assessment included type I error, using Alzheimer’s Disease Assessment Scale-cognitive (ADAS-cog)
scores from 817 untreated patients and power and accuracy in the treatment effect estimates after
the addition of simulated treatment effects. The model selection and averaging among a set of
pre-selected candidate models were driven by the Akaike information criteria (AIC). The type I error
rate was controlled only for IMA and rcLRT; the inflation observed otherwise was explained by the
placebo model misspecification and selection bias. Both IMA and rcLRT had reasonable power and
accuracy except under a low typical treatment effect.

Keywords: individual model averaging; model averaging; randomization test; Likelihood Ratio Test;
longitudinal modelling; type I error; power; accuracy; model misspecification

1. Introduction

Population model-based (pharmacometric) approaches, through the usage of NLMEM,
improve the power considerably when analyzing longitudinal data [1–4]. However, the
assumptions involved in NLMEM, e.g., the absence of model misspecification or asymptotic
conditions, can impact the performance of such approaches in terms of type I error, power,
and accuracy of the treatment effect estimates [5]. As the development of a reasonable
model often implies a data-driven trial and error process across many models, type I
error inflation related to multiple testing is a legitimate concern. Furthermore, despite all
the efforts invested in the rationalization of the selection of one of the candidate models,
it inevitably leads to selection bias, and relying on a unique selected model can hinder
inference by discarding the model structure uncertainty and dismissing the inherent model
misspecification [6].

Over the recent years, multiple approaches have been developed to overcome these
caveats. Model-averaging across drug models (MAD) weights the outcome of interest
from a set of pre-selected models according to a goodness-of-fit based metric [7–10] to
prevent selection bias and handle model structure uncertainty. Individual model averaging
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(IMA) [11] uses mixture models to test for treatment effect, which mitigates consequences of
both placebo and drug model misspecification and improves the conditions of application
of the likelihood ratio test (LRT). combined-LRT (cLRT) [12] combines an alternative cut-off
value for the LRT and MAD to handle model structure uncertainty.

The pre-selection of a set of possible candidate models prior to the data analysis,
recommended in the ICH E9 guidance [13], is a common alternative to handle model
selection bias and its consequences in terms of bias in the estimates. The restriction of the
set of candidate models also inherently reduces the type I error inflation caused by multiple
testing. MAD, IMA, and cLRT were assessed separately in different contexts of treatment
effect or dose-response assessment using real or simulated data. This work aimed to assess
MAD, IMA, and cLRT together with four other related approaches in the same framework:
treatment effect assessment in balanced two-armed designs using real data. The additional
approaches were standard model selection (STDs), structural similarity selection (SSs),
randomized-cLRT (rcLRT), and model-averaging across placebo and drug models (MAPD).

Three evaluation aspects were considered: type I error, power, and accuracy of treat-
ment effect estimate (assessed via the root mean squared error (RMSE)). The former aspect
was assessed using real natural history data, while the two latter were assessed on the
same natural history data modified by the addition of various simulated treatment effects.
Model candidate pre-selection is an inherent part of the model-averaging approaches. In
this work, it was generalized to all the approaches to provide a common scope to the seven
NLMEM approaches for the evaluation. The AIC was used for selection and weighting
according to previous recommendations [8,9].

2. Materials and Methods

For parameter estimation, NONMEM [14] version 7.5.0 was used. The simulation or
randomization and re-estimations were performed using PsN [15,16] version 5.2.1 through
the Stochastic Simulation and Estimation or the randtest functions. The runs with failed
minimization status or unreportable number of significant digits were removed from the
analysis (see Appendix A for more details). The first order with conditional estimates
(FOCE) method was used for all models without the interaction option, as the residual
error model was additive. The processing of the results was performed with the statistical
software R [17] version 4.1.2.

2.1. Data

Data used in the preparation of this article were obtained from the Alzheimer’s
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was
launched in 2003 as a public-private partnership, led by Principal Investigator Michael
W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic
resonance imaging, positron emission tomography, other biological markers, and clinical
and neuropsychological assessment can be combined to measure the progression of mild
cognitive impairment and early Alzheimer’s disease. For up-to-date information, see
www.adni-info.org.

The real natural history data were longitudinal ADAS-cog scores ranging from 0 to 70,
previously published and detailed elsewhere [18]. Due to the high number of categories,
the data were treated as continuous. In this work, we used 817 individuals (aged from 55
to 91 years old), with ADAS-cog evaluation at 0, 6, 12, 18, 24, and 36 months, for a total
observation count of 3597. The Baseline Mini-Mental State (BMMS) was also collected at
baseline for all the individuals and is used to describe the baseline ADAS-cog scores.

The study population was randomized to two study arms, representing placebo
(TRT = 0) and treatment (TRT = 1). In the base scenario used to assess type I error, all
subjects’ data were their natural disease progression. To assess the power and the accuracy
of the treatment effect estimates, the original data were also modified by adding various
treatment effect functions to the individual allocated to the treated arm. Offset (Equation (2))
and time-linear (Equation (3)) models were used to generate different treatment effect
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scenarios: with (30% CV) or without IIV on the treatment effect parameters, with a low
(2-points increase) or a high (8-points increase) typical treatment effect at the end of the
study. Eight treatment effect scenarios were generated, using both time-linear and offset
drug models: (1) with or ; (2) without IIV; (3) small treatment effect; and (4) large treatment
effect.

2.2. Models

The published disease model is described extensively elsewhere [18] and summarized
in Equation (1). The corresponding NONMEM code is provided in Appendix B. The disease
model is time-linear (Equation (1a)), including covariates effects on the slope (Equation (1c)),
and a slope model links the baseline value to BMMS (Equation (1b)).

ADAScog,i(t) = ADAScog,i(0) + αit + ε (1a)

ADAScog,i(0) = (Θbaseline + Θintercept · BMMSi) + η1,i (1b)

αi = f (Covi, Θ, η2,i) (1c)

where Θ describes fixed effect parameters, ηi ∼ N (0, ω2) are additive individual random
effects, and ε ∼ N (0, σ2) is the residual error for each observation. Four alternative disease
models were considered for MAPD and are presented in Table 1.

Offset with or without IIV (Equation (2)) and disease-modifying with or without
IIV (Equation (4)) models were considered as treatment effect models for the type I error
assessment. For the power and accuracy assessment, a time-linear model (Equation (3))
was used instead of the disease-modifying model to avoid any disease model assumption
in the simulation of the treatment effect.

ΘDE + η (2)

ΘDE + η

36
t (3)

α(1− (ΘDE + η)) (4)

With α being the disease model slope.

Table 1. Alternative disease models for the model averaging across placebo and drug models
approach.

Modified Component Modification

Structural model Time-exponential
RUV model IIV on RUV
IIV model Boxcox transformation of η1
IIV model t-distribution of η1

IIV: Inter-individual variability, RUV: Residual unexplained variability.

2.3. Description of Modelling Approaches

For all the approaches, the Akaike information criteria (AIC) is used to compare the fit
of the set of candidate models. The AIC is hence used to select the best-fitting candidate
used as the alternative hypothesis (H1) in the statistical test, except for the model-averaging
approaches, i.e., MAD and MAPD, for which no selection occurs, but an AIC-based weight
is computed for each candidate model. The LRT is then used to conclude the presence of a
treatment effect, except for the model averaging approaches, cLRT, and rcLRT for which
the alternatives are described below.

In the STDs approach (Equation (5), Figure 1a), the null hypothesis (H0) consists of a
placebo model applied to all subjects, and H1 adds a drug model to the treated subjects.
The LRT is used to discriminate between the best model selected and H0 to conclude the
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presence of a treatment effect, using ∆OFV as the test statistic. The distribution of this
test statistic under H0 is unknown. In the LRT, it is assumed to follow a χ2 distribution
with ν degrees of freedom, with α = 0.05, and ν, the number of additional parameters
estimated in H1 compared to H0. cLRT and rcLRT assumed a different distribution for
that test statistic under H0, the alternative distribution being obtained by replicating the
model selection procedure and the test statistic computation n = 100 times over n different
data sets. For cLRT (Equation (5), Figure 1a), the distribution is obtained with n data sets
simulated under H0, for rcLRT (Equation (5), Figure 1a) the distribution is obtained with n
randomized data set differing by the treatment allocation assignment.

H1Pub,dH1Pub,3H1Pub,2H1Pub,1

H0Pub,0

AIC selection among D + 1 models

∆OFV = OFVH1Pub,d −OFVH0Pub,0

Reject H0 if ∆OFV < qα

(a) STDs, cLRT and rcLRT

H1Pub,dH1Pub,dH1Pub,dH1Pub,dH1Pub,3H1Pub,dH1Pub,dH1Pub,dH1Pub,2H1Pub,dH1Pub,dH1Pub,dH1Pub,1H1Pub,dH1Pub,dH1Pub,d

H0p,0H03,0H02,0H0Pub,0

Get PD + P model weights

Wtp,d =
exp(AICp,d−AICmin)

∑P
p′=1 ∑D

d′=0 exp(AICp′ ,d′−AICmin)

Total drug models weight: Wt = ∑P
p=1 ∑D

d=1 Wtpd

(b) MAD and MAPD (lighter boxes)

H1Pub,dH1Pub,3H1Pub,2H1Pub,1

H0Pub,dH0Pub,3H0Pub,2H0Pub,1

AIC selection among 2D models

∆OFV = OFVH1Pub,d −OFVH0Pub,d

Reject H0 if ∆OFV < χ2
α,ν

(c) SSs and IMA

Figure 1. Workflow illustration of the different methods.

In SSs (Equation (6), Figure 1c), the drug model is fitted to all subjects in H0, but H1
allows different estimates for the treated individuals. The LRT is used to conclude on the
presence of a treatment effect using the best model according to the AIC.

The two model averaging approaches, MAD and MAPD, have the H0 and H1 hy-
potheses constructed according to STDs (Equation (5) and Figure 1b). Instead of selecting
a unique best candidate model via a selection step, the model-averaging approaches as-
signed an AIC-based weight to each candidate model (Equation (7)), with AICmin being
the minimum AIC of the candidate models. Hence, each model from the pre-defined set
contributes to the computation of the metric of interest proportionally to its relative weight,
contrary to the selection-based methods where only the best model candidate is used to
draw conclusions. MAD considered a unique H0 and multiple H1 via the formulation of
various drug models and a unique placebo model, while MAPD differed by also consider-
ing various placebo models in the set of pre-defined models. In that aspect, MAPD differed
from MAD, and the other six approaches, by considering multiple disease models instead
of only the published disease model.

In IMA (Equation (8a), Figure 1c), all subjects have, through a mixture feature, a
probability ΘMIX of being described by the drug model. This probability is fixed to the
placebo allocation rate (0.5) in H0 but estimated based on the treatment allocation in H1.
The LRT is used to conclude on the presence of a treatment effect using the best model
according to the AIC.
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H0Pub,0 : PlbPub (5a)

H1Pub,d : PlbPub + fdrug,d(TRT) (5b)

where PlbPub is the published placebo model and fdrug,d(TRT) a drug model d depending
on the treatment allocation TRT.

H0Pub,d : PlbPub + fdrug,d (6a)

H1Pub,d : PlbPub +

{
fdrug,d if TRT = 0,
fdrug,d if TRT = 1,

(6b)

where the same drug model d is applied to all the individuals, allowing for different
parameter estimates between the two arms in H1.

Wtp,d =
exp(AICp,d −AICmin)

∑P
p′=1 ∑D

d′=0 exp(AICp′ ,d′ −AICmin)
(7)

Mixture model:

{
PlbPub if Mix = 1
PlbPub + fdrug,d if Mix = 2

(8a)

H0Pub,d : Pr(Mix = 1) = Pr(Mix = 2) = ΘMIX = 0.5 FIX (8b)

H1Pub,d :

{
Pr(Mix = 1) = (1− TRT)ΘMIX + TRT(1−ΘMIX)

Pr(Mix = 2) = 1− Pr(Mix = 1)
(8c)

2.4. Approaches Assessment

For each of the seven approaches, the type I error rate was assessed first using the
raw natural history data modified to randomly allocate (1:1) each subject to an artificial
placebo or treated arm. The allocation was repeated N = 100 times to mimic N random
trials without treatment effect. The type I error rate was computed over the N trials as the
frequency with which H0 was rejected and assumed to be adequate when falling within
the 2.5th–97.5th percentiles of a binomial distribution with a probability of success of 5%
on N trial replicates.

When the type I error was controlled, power and accuracy were assessed using the data
modified by the addition of a treatment effect to the subjects allocated to the treated arm.
N simulations were performed for each of the eight treatment effect scenarios. The power
was computed as the frequency with which H0 was rejected over N trials. Regarding the
model-averaging approaches, the type I error and power were computed as the percentage
of the weights allocated to any of the H1 considered in the set of the candidate models.

The accuracy in the treatment effect estimates was assessed only when using the
data modified by the addition of simulated treatment effect, using the RMSE according
to Equation (9), where ΘDE,i is the true value used in the simulations and Θ̂DE,i is the
estimated value of the nth trial.

RMSE =

√
∑N

n=i(Θ̂DE,i −ΘDE,i)2

100
(9)

For IMA, Θ̂DE,i was computed according to Equation (10), to account for the submodel
allocation probability:
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Θ̂DE,i,IMA = (2ΘMIX,i − 1)Θ̂DE,i (10)

3. Results

The type I error for each approach is available in Table 2. Only IMA and rcLRT had
controlled type I error (6%). All the other approaches had 100% type I error except SSs,
for which the type I error was inflated to 17%. The model-averaging approaches had a
very negligible total weight assigned to any H0 hypothesis, ≤ 6× 10−24. Details about
the drug models selected in the N trials, their corresponding dOFV, and critical cut-off
value for the LRT are presented in Figure 2A for all but the model-averaging approaches.
The model-averaging approaches results are presented in Figure 2B, with the total relative
weight allocated to any of the H0 or the H1 hypotheses. The minimization status is available
in Appendix A in Figures A1 and A2. The cLRT and rcLRT alternative distributions used
for the determination of the cut-off value in the statistical test are presented in Figure A5 in
Appendix C. The summary of the model fits (number of estimated parameters and OFV) is
provided in Appendix D in Table A1 for the models used in the type I error computation for
all the approaches but MAPD, and in Table A2 for the models used in MAPD, showing that
the four proposed alternative disease models for MAPD improved the OFV significantly
compared to the published disease model.

Table 2. Type I error per approach using the real natural history data (N = 100).

Approach Placebo Model Type I Error (%) [1.64–11.28% *]

STDs Published 100
SSs Published 17
cLRT Published 100
rcLRT Published 6
MAD Published 100 †

MAPD Pre-selected set 100 †

IMA Published 6

* 2.5th and 97.5th percentiles of a binomial distribution with a probability of success of 5% on 100 trial replicates.
† Average of the percentage of the relative weights assigned to any H1.

Figure 2. Panel (A) illustrates the type I error results for the non-model-averaging approaches: the
colored dots and the associated black boxplot correspond to the distribution of the dOFV of the H1
hypothesis selected by the AIC selection step in each of the 100 trials. The distribution of the critical
value used for the statistical test for each approach is indicated by the red boxplot. Panel (B) illustrates
the proportion of the total relative weight associated with either the H0 or the H1 hypothesis.

Power and accuracy in treatment effect estimates (RMSE) were investigated for IMA
and rcLRT as they were the only two approaches with controlled type I error. The results
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(power and RMSE) for the eight investigated treatment effect scenarios are presented in
Table 3. The minimization status is available in Appendix A.2 in Figure A3 for rcLRT, and
in Figure A4 for IMA. For the high typical treatment effect scenarios (8-points), IMA and
rcLRT had 100% power regardless of the simulated treatment effect model addition. For
the low typical treatment effect scenarios (2-points), rcLRT had higher power than IMA
when simulating the treatment effect with the offset models, whereas the opposite was true
when simulating with the time-linear model. The RMSE was always higher for IMA for all
eight scenarios tested.

Table 3. Power and RMSE for approaches with controlled type I error on data modified by the
addition of simulated treatment effect models for the eight investigated scenarios (N = 100). RMSE:
root mean squared error, IIV: inter-individual variability.

rcLRT IMA

Simulation Model Typical Treatment Effect Power (%) RMSE Power (%) RMSE

Offset 2 100 0.26 37 0.83
Offset IIV 2 100 0.42 33 0.75
Time-linear 2 6 1.29 63 1.54
Time-linear IIV 2 6 1.29 67 1.58

Offset 8 100 0.26 100 0.48
Offset IIV 8 100 0.29 100 0.41
Time-linear 8 100 0.55 100 0.57
Time-linear IIV 8 100 0.57 100 0.61

4. Discussion

Seven NLMEM approaches were compared in the same context of treatment effect
assessment in balanced two-armed trials using real natural history data. The compari-
son scope was first the type I error using the natural history data observed without any
treatment. For approaches with controlled type I error, power and accuracy in the drug
estimates were evaluated using the natural history data modified by the addition of dif-
ferent simulated treatment effects. Among the seven approaches tested, only two (IMA
and rcLRT) had controlled type I error and were consequently assessed on data with a
simulated treatment effect. IMA and rcLRT had similar results in terms of power: 100%
power in the presence of a high typical treatment effect but lower in the presence of a low
typical treatment effect, except for rcLRT when an offset drug model was used to simulate
the treatment effect (100% power). rcLRT had consistently better RMSE than IMA.

The STDs approach type I error results (100%) could be anticipated from the fit of
the four drug models on one randomization of the treatment allocation (see Table A1 in
Appendix D.1). Out of the four models, offset or disease-modifying with or without IIV,
the two models with IIV had a significant drop in OFV, according to the LRT. The disease-
modifying model with IIV had a drop of −133.54, compared to a critical value of −5.99
for the LRT, about 111 OFV points lower than the offset drug model with IIV, leaving no
chance of selection for another candidate model even after the parameters-based penalty
introduced by the AIC. Previous investigations [11] of the STDs approach without the
AIC selection step already outlined the uncontrolled type I error of the approach. Such
uncontrolled type I error was attributed to the placebo model misspecification leaving
room for additional model components and other possible violations of the standard LRT
assumptions, such as not fulfilling the asymptotic properties. In this case, there was a
pre-selection of H1 models using AIC. Another common way of model selection is to make
multiple tests of different H1s against the H0 and then select the H1 associated with the
lowest p-value, given that it is below the predetermined cut-off. Both these procedures
suffer from multiple testing and their greedy behavior.

The cLRT approach [12] was introduced to account for the multiple testing of drug
models and the structure model uncertainty in the computation of the critical value by
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using Monte Carlo simulation under H0. cLRT had controlled type I error in the context of
simulated data [12], but had a 100% type I error inflation with the real natural history data
and the published disease model that was used in our study. The alternative computation
of cut-off values for cLRT was unable to prevent the type I error inflation.

Even though cLRT accounts for multiple testing in the computation of the critical
value via Monte Carlo simulations, it still assumes that the structure of the placebo model
is adequate by simulating under the assumption of that model for the computation of
an alternative cut-off value for the statistical test. By computing the critical value using
randomization of the treatment allocation, rcLRT adds the uncertainty of the placebo model
in the computation of the critical value by removing any placebo model assumption from
the process. The success of this approach (controlled type I error with a rate of 6%) could
also be anticipated from the fit of the drug model on the natural history data (see Table A1
in Appendix D.1), as the dOFV of the best drug model used to compute the critical value is
the same as the one used to test for treatment effect. This ensures that the distribution used
for the critical value computation is of the same magnitude as the model selected by the
AIC step, which is critical to have a chance to limit the type I error inflation. Appendix C
illustrates the consequent difference in the typical value of the cut-off distribution obtained
by cLRT and rcLRT, ranging, respectively, between−2 to−8 and−195 to−240. The success
of this approach also validates the assumption that placebo model misspecification is the
major factor involved in the type I error inflation of STDs and cLRT.

Aside from alternatives to the cut-off value used in the statistical test, SSs proposes
another alternative to control the type I error inflation observed with STDs. SSs challenged
the assumption of the main inflation factor being that the drug model tested is describing
some features of the data that were not included in H0. Accordingly, SSs fits the drug
model to all the subjects in H0 and allows for different estimates between the arms in H1.
The expectation was that the drop in OFV observed in H1 for STDs, corresponding to an
improvement of the placebo model rather than a treatment effect, would be included in the
OFV of H0 and hence removed from the dOFV between H1 and H0. The results showed
that the approach helped to decrease the type I error inflation (17% instead of 100%) but
was not enough to control it. Further investigations would be necessary to decide whether
and to which extent the remaining inflation should be attributed to multiple testing or the
magnitude of the placebo model misspecification still present.

Pre-selection of the set of candidate drug models prior to the data analysis is a rec-
ommended practice to limit the type I error inflation [13]. Previous publications showed
its application with NLMEM in combination with model-averaging techniques, which
was helpful to integrate drug model misspecification in the prediction of key metrics to
plan better later stages of drug development [8,9,12]. To our knowledge, in the NLMEM
context, the averaging step was in these studies performed over a set of multiple drug
model candidates and not over a set of both placebo and drug model candidates. In this
work, the MAD approach illustrates the former, and MAPD the latter. MAD showed type I
error control in previous publications on simulated data (method 3 from [8]) which was not
the case with the real natural history data used in our study (type I error rate of 100%). For
the model-averaging approaches, the type I error was computed as the percentage of the
relative weights assigned to any H1, as the weights are usually used to favor the output of
the respective models in the computation of an effect metric. Because the weights were AIC
based, the favored models among the set of candidates were also the model with the lowest
OFV (disease-modifying model with IIV), and because of the significant gap between this
lowest and the second lowest OFV model (111 points), the total relative weight assigned to
any H0 was very negligible (10−25). This result was also predictable from the model fit on a
single allocation randomization (see Table A1 in Appendix D.1). The addition of multiple
placebo models in the set of candidate models did not help to reduce the type I error infla-
tion and also resulted in a 100% type I error rate, even though the four alternative placebo
models proposed all significantly improved the OFV (between −23.62 and −60.15 decrease
in OFV). For the Boxcox transformation, the t-distribution, and the time-exponential model,
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the dOFV pattern across the four drug models was the same as with the published drug
model. The drug models with IIV had significant dOFV, with the disease-modifying model
with IIV being the best one, with a dOFV of about−100 points. The model with IIV on RUV
had only the disease-modifying model with IIV as a significant treatment effect model with
a drop of −68.84 points. The maximum difference between the model with the lowest OFV
(13,585.26 for the t-distribution placebo model with disease-modifying with IIV model)
and the model with the highest OFV (13,768.66 for the published model without treatment
effect), i.e., 183.40 points, also lead to a very negligible total relative weight (6× 10−24)
assigned to any H0. We can note that the multiplicity of H0 increased the total weight
assigned to the H0 by less than 10−25. Both MAD and MAPD suffered from the gap in
OFV between the published model without treatment effect and the model with the best
treatment effect, even though the set of pre-selected drug model candidates is restricted to
only four models.

Power and bias in treatment effect estimates were assessed for IMA and rcLRT on
the natural history data modified by the addition of offset or disease-modifying treatment
effects with or without IIV, with a low or a high typical treatment effect. Both approaches
had similar power performances and reasonably good RMSE in the presence of a high
typical treatment effect. However, in the presence of a low typical treatment effect simulated
with an offset model, only rcLRT had good power and RMSE. When using time-linear
treatment effect models with a low typical treatment effect, both IMA and rcLRT had
unsatisfactory power and poor RMSE. These poor performances can be explained by the
combination of two main factors: (1) a difficulty to distinguish the drug model from the
placebo model as the added treatment effect was simulated with the same mathematical
function as the placebo model; (2) the magnitude of the treatment effect (2 ADAS-cog score
points at 36 months) which might be of the same magnitude as the model misspecification.
The performances of IMA in the low typical treatment effect scenarios can be explained by
the additional degree of freedom brought by the mixture model, allowing some over-fitting
associated with a much lower OFV, misleading the AIC selection process.

Aside from these two specific simulation scenarios, the RMSE was overall better for
rcLRT. This loss in accuracy for IMA can be explained by the fact that the formula used to
compute the final treatment effect combines two parameters estimates: the treatment effect
estimate and the mixture proportion, contrary to rcLRT, where the treatment effect is only
in the treatment effect estimate (see Equation (10)).

Overall the performances of the approaches were well aligned with the OFV obtained
for each approach with a single fit of the different model (results presented in Appendix D).
The usage of real data together with a model that was developed, assessed, and published
using the same data frames, this work in an interestingly realistic context with real-life
model misspecifications. In contrast, the addition of a simulated treatment effect to cre-
ate scenarios for power and accuracy assessment might lack some real-life complexity.
Nonetheless, it allowed the highlighting of the dangerous combination between described
features of the natural history data by the placebo model and greedy behavior of the test
statistic (dOFV) and/or selection criteria (AIC).

The scope of this work was restricted to treatment effects for balanced two-armed de-
signs. While it is difficult to extrapolate the results further for most of the approaches, IMA
and the standard approach without the selection step were assessed regarding type I error
in unbalanced designs with respect to treatment effect and dose-response elsewhere [19].
The results were consistent with the ones presented here.

5. Conclusions

This work compared seven NLMEM approaches to test for treatment effects in the
same framework using real natural history data. All approaches but IMA and rcLRT had
inflated type I error. This can be explained by the misspecification of the placebo model,
arising from the use of real natural history data, absent from the previous assessments
of cLRT and MAD. Under such circumstances, the five remaining approaches (STDs, SSs,
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MAD, MAPD, and cLRT) suffered from the greedy behavior of the AIC criteria in the
selection or the weighting step, often dismissing the null hypothesis. rcLRT handles the
placebo model misspecification by calibrating the cut-off values for the statistical test via a
randomization test, while IMA handles it by introducing the drug model already in the null
hypothesis via a mixture model. Both IMA and rcLRT show promising results regarding
power, bias, and accuracy using natural history data modified by the addition of various
simulated treatment effects. However, both approaches were not flawless: IMA had low
power to detect low typical treatment effect, and both showed poor performances in the
scenarios combining low typical treatment effect and a treatment effect addition similar to
the placebo model.
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BMMS Baseline Mini-Mental State
cLRT Combined Likelihood Ratio Test
dOFV Difference in Objective Function Value
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IIV Inter-Individual Variability
IMA Individual Model Averaging
LRT Likelihood Ratio Test
MAD Model Averaging Across Drug models
MAPD Model Averaging Across Placebo and Drug models
NLMEM Non-Linear Mixed Effects Models
OFV Objective Function Value
rcLRT Randomized Combined Likelihood Ratio Test
RMSE Root Mean Squared Error
RUV Residual Unexplained Variability
SSs structural similarity selection
STDs Standard model selection

Appendix A. Minimization Status

Appendix A.1. Type I Error

Figure A1. Minimization status for the models fitted on the natural history data for all the approaches
but MAPD. Numbers indicate the count per status. DM: disease-modifying, IIV: inter-individual
variability, SSE: stochastic simulation and estimation.

Figure A2. Minimization status for the MAPD approach on natural history data, facetted by placebo
models. Numbers indicate the count per status. DM: disease-modifying, IIV: inter-individual
variability, RUV: residual unexplained variability.



Pharmaceutics 2023, 15, 460 12 of 19

Appendix A.2. Power

Figure A3. Minimization status for the rcLRT approach on data with various addition of simulated
treatment effects. The plot is facetted horizontally by the function used to simulate the treatment
effect and vertically by the typical size of the treatment effect and the treatment allocation used.
Numbers indicate the count per status. IIV: inter-individual variability, TDE: typical drug effect, TL:
time-linear.

Figure A4. Minimization status for the IMA approach on data with various addition of simulated
treatment effects. The plot is facetted horizontally by the function used to simulate the treatment
effect and its typical size and vertically by the drug model fitted. Numbers indicate the count per
status. IIV: inter-individual variability, TDE: typical drug effect, TL: time-linear.

Appendix B. NONMEM Code of the Published Placebo Model

$PROBLEM Published model
$INPUT C ID TIME DV BMMS INVF AGE APOF SEX EDU ARM
; ID : 817 i n d i v i d u a l s
; TIME : months
;DV : ADAS−cog score
;BMMS : b a s e l i n e MMSE
; INVF : inverse of b a s e l i n e ADAS
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;AGE : years
;APOF : ApoE 0=non c a r r i e r , 1= hetero , 2=homo− c a r r i e r
; SEX : 1=male
;EDU : education l e v e l in years
;ARM : fake random TRT a l l o c a t i o n
$DATA . . / data/data . csv IGNORE=@
$ABBREVIATED COMRES=3 PROTECT
$PRED

; −−−−−−−−− B a s e l i n e model
INT=THETA( 2 ) ; b a s e l i n e ADAS−cog
BSLP = THETA( 3 )
MM1 = BSLP*BMMS
BSL = ( INT + MM1) + ETA( 1 )

; −−−−−−−−− Covar ia tes

BAS1=INVF * *THETA( 5 )

; age e f f e c t
AGE1 = (AGE/ 7 5 ) * *THETA( 6 )

; ApoE e f f e c t
APF = 0
IF (APOF.GT. 0 )THEN ;0= non− c a r r i e r
APF = 1
ENDIF
APO = THETA( 7 )

; SEX e f f e c t
GEN = 0
IF ( SEX .EQ. 1 )THEN ;1= male
GEN = 1
ENDIF
GEN1 = THETA( 8 ) * *GEN

; education
EDC = (EDU/ 1 5 ) * *THETA( 9 )

; −−−−−−−−− Disease progress ion model
SLP=THETA(1)/12 ; d i sease progress ion
ISLP =SLP*BAS1*AGE1* (APO* *APF) *GEN1*EDC+ ETA( 2 )
ADASCOG=BSL + ISLP *TIME

F=ADASCOG
W=THETA( 4 )
Y=F+W*EPS ( 1 )

$THETA 4 ; PRM TH1 PLB SLOPE
( 0 , 6 0 ) ; PRM TH2 BASE INTERCEPT
−1.69 ; PRM TH3 BASE SLOPE
( 0 , 3 ) ; PRM TH4 RUV ADD
( 1 , 3 , 5 ) ; PRM TH5 COV GAM INVF
−1 ; PRM TH6 COV AGE
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1 ; PRM TH7 COV APO
1 ; PRM TH8 COV SEX
0 FIX ; PRM TH9 COV EDU

$OMEGA BLOCK( 2 )
9 ; PRM OM1 BASE
0 . 0 1 0 . 0 9 ; PRM OM2 PLB SLOPE

$SIGMA 1 FIX ; PRM SIG1
$ESTIMATION MAXEVAL=9999 METHOD=1 NOABORT

Appendix C. Alternative Distribution for the Cut-Off Value Used in the Statistical
Tests on the Natural History Data

Figure A5. Distribution on the N cut-off values computed from simulations of H0 for cLRT (left
panel), or from randomizations of the treatment allocation column for rcLRT (right panel). Each of
the N cut-offs was taken as the 5th percentile of dOFV (H1-H0) computed over n = 100 data sets.

Appendix D. Models Description

Appendix D.1. Models Fitted on Natural History Data

Table A1. Models summary of the models fitted to the natural history data for all the approaches but
MAPD (n = 1). IIV: inter-individual variability, OFV: objective function value, dOFV: difference in
OFV between the model and its reference (Ref), Prm_nb: number of parameters estimated.

Run_nb Ref Description Prm_nb OFV dOFV

Models fitted on real natural history data
2 NA Published model 11 13,768.66 -
3 2 Published + Offset 12 13,767.64 −1.02
4 2 Published + Offset IIV 13 13,746.54 −22.12
5 2 Published + Disease modifying 12 13,765.02 −3.64
6 2 Published + Disease modifying IIV 13 13,635.12 −133.54
Models fitted on simulated natural history data
7 NA Published model on simulated data 11 13,567.91 -
12 7 Published + Offset 12 13,567.91 0
13 7 Published + Offset IIV 13 13,567.91 0
14 7 Published + Disease modifying 12 13,561.34 −6.57
15 7 Published + Disease modifying IIV 13 13,557.64 −10.27
IMA models fitted on real natural history data
100 NA Published + Offset base 12 13,765.13 -
101 100 Published + Offset full 13 13,765.11 −0.02
102 100 Published + Offset IIV base 13 13,695.61 −69.52
103 102 Published + Offset IIV full 14 13,694.39 −1.23
104 100 Published + Disease modifying base 12 13,473.09 −292.04
105 104 Published + Disease modifying full 13 13,471.41 −1.67
106 104 Published + Disease modifying IIV base 13 13,455.68 −17.41
107 106 Published + Disease modifying IIV full 14 13,454.20 −1.48
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Table A1. Cont.

Run_nb Ref Description Prm_nb OFV dOFV

SSs models fitted on real natural history data
50 NA Published + Offset base 12 13,766.41 -
54 50 Published + Offset full 13 13,766.40 −0.01
51 50 Published + Offset IIV base 13 13,729.93 −36.48
56 51 Published + Offset IIV full 15 13,728.82 −1.11
52 50 Published + Disease modifying base 12 13,686.89 −79.53
57 52 Published + Disease modifying full 13 13,683.10 −3.79
55 50 Published + Disease modifying IIV base 13 13,182.59 −583.82
58 55 Published + Disease modifying IIV full 15 13,180.55 −2.05

Table A2. Models summary of the models fitted to the natural history data for the MAPD approach
(n = 1). dOFV: difference in OFV between the model and its reference (Ref), IIV: inter-individual
variability, OFV: objective function value, Prm_nb: number of parameters estimated, RUV: residual
unexplained variability.

Run_nb Ref Description Prm_nb OFV dOFV

Published placebo model
2 NA Published placebo model 11 13,768.66 -
3 2 Published + Offset 12 13,767.64 −1.02
4 2 Published + Offset IIV 13 13,746.54 −22.12
5 2 Published + Disease modifying 12 13,765.02 −3.64
6 2 Published + Disease modifying IIV 13 13,635.12 −133.54
Published placebo model with t-distribution transformation
19 NA Alternative placebo model 12 13,708.54 -
203 19 Pub t-dist + Offset 13 13,707.82 −0.72
204 19 Pub t-dist + Offset IIV 14 13,691.71 −16.83
207 19 Pub t-dist + Disease modifying 13 13,705.21 −3.33
208 19 Pub t-dist + Disease modifying IIV 14 13,585.26 −123.28
Published placebo with IIV on RUV
240 NA Alternative placebo model 12 13,708.51 -
241 240 Pub IIV on RUV + Offset 13 13,708.01 −0.5
242 240 Pub IIV on RUV + Offset IIV 14 13,708.01 −0.5
243 240 Pub IIV on RUV + Disease modifying 13 13,707.30 −1.21
244 240 Pub IIV on RUV + Disease modifying IIV 14 13,639.67 −68.84
Published placebo model with Boxcox transformation
250 NA Alternative placebo model 12 13,711.92 -
251 250 Pub Boxcox + Offset 13 13,710.97 −0.94
252 250 Pub Boxcox + Offset IIV 14 13,692.13 −19.78
253 250 Pub Boxcox + Disease modifying 13 13,709.59 −2.32
254 250 Pub Boxcox + Disease modifying IIV 14 13,590.41 −121.51
Published placebo with time-exponential
270 NA Alternative placebo model 12 13,745.04 -
271 270 Pub time-exp + Offset 13 13,738.74 −6.3
272 270 Pub time-exp + Offset IIV 14 13,724.31 −20.73
273 270 Pub time-exp + Disease modifying 13 13,737.09 −7.95
274 270 Pub time-exp + Disease modifying IIV 14 13,616.90 −128.14
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Appendix D.2. rcLRT Models Fitted on Data Modified by the Addition of a Simulated
Treatment Effect

Table A3. Models summary of the rcLRT models fitted to the data modified by the addition of various
simulated treatment effects (n = 1). CV: coefficient of variation, dOFV: difference in OFV between the
model and its reference (Ref), IIV: inter-individual variability, OFV: objective function value, Prm_nb:
number of parameters estimated, RUV: residual unexplained variability, TDE: typical drug effect.

Run_nb Ref Description Prm_nb OFV dOFV

Data modified by the addition of offset drug model, TDE = 2
44 NA Published placebo model 11 13,844.33 -
170 44 Published plb + Offset 12 13,765.80 −78.53
171 44 Published plb + Offset IIV 13 13,761.33 −83
172 44 Published plb + Time linear 12 13,834.29 −10.04
173 44 Published plb + Time linear IIV 13 13,830.05 −14.28
Data modified by the addition of offset IIV drug model, TDE = 2 with 30%CV
24 NA Published placebo model 11 13,858.20 -
175 24 Published plb + Offset 12 13,782.99 −75.21
174 24 Published plb + Offset IIV 13 13,776.00 −82.2
176 24 Published plb + Time linear 12 13,848.41 −9.79
177 24 Published plb + Time linear IIV 13 13,781.10 −77.1
Data modified by the addition of time-linear drug model, TDE = 2
74 NA Published placebo model 11 13,768.85 -
179 74 Published plb + Offset 12 13,768.84 −0.01
180 74 Published plb + Offset IIV 13 13,763.69 −5.16
178 74 Published plb + Time linear 12 13,765.69 −3.16
181 74 Published plb + Time linear IIV 13 13,762.61 −6.24
Data modified by the addition of time-linear IIV drug model, TDE = 2 with 30%CV
64 NA Published placebo model 11 13,771.71 -
183 64 Published plb + Offset 12 13,771.70 −0.01
184 64 Published plb + Offset IIV 13 13,766.42 −5.3
185 64 Published plb + Time linear 12 13,768.81 −2.91
182 64 Published plb + Time linear IIV 13 13,765.42 −6.29
Data modified by the addition of offset drug model, TDE = 8
360 NA Published placebo model 11 15,077.75 -
364 360 Published plb + Offset 12 13,765.80 −1311.95
368 360 Published plb + Offset IIV 13 13,761.33 −1316.41
372 360 Published plb + Time linear 12 14,857.43 −220.32
376 360 Published plb + Time linear IIV 13 14,845.45 −232.3
Data modified by the addition of offset IIV drug model, TDE = 8 with 30%CV
361 NA Published placebo model 11 15,185.64 -
365 361 Published plb + Offset 12 13,981.87 −1203.77
369 361 Published plb + Offset IIV 13 13,917.96 −1267.68
373 361 Published plb + Time linear 12 14,987.39 −198.25
377 361 Published plb + Time linear IIV 13 14,961.95 −223.69
Data modified by the addition of time-linear drug model, TDE = 8
362 NA Published placebo model 11 13,893.49 -
366 362 Published plb + Offset 12 13,878.02 −15.47
370 362 Published plb + Offset IIV 13 13,873.39 −20.1
374 362 Published plb + Time linear 12 13,765.69 −127.8
378 362 Published plb + Time linear IIV 13 13,762.61 −130.88
Data modified by the addition of time-linear IIV drug model, TDE = 8 with 30%CV
363 NA Published placebo model 11 13,916.08 -
367 363 Published plb + Offset 12 13,902.06 −14.02
371 363 Published plb + Offset IIV 13 13,896.40 −19.68
375 363 Published plb + Time linear 12 13,799.26 −116.82
379 363 Published plb + Time linear IIV 13 13,792.27 −123.81
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Appendix D.3. IMA Models Fitted on Data Modified by the Addition of a Simulated
Treatment Effect

Table A4. Models summary of the IMA models fitted to the data modified by the addition of various
simulated treatment effects (n = 1). CV: coefficient of variation, dOFV: difference in OFV between the
model and its reference (Ref), IIV: inter-individual variability, OFV: objective function value, Prm_nb:
number of parameters estimated, RUV: residual unexplained variability, TDE: typical drug effect.

Run_nb Ref Description Prm_nb OFV dOFV

Data modified by the addition of offset drug model, TDE = 2
312 NA Published plb + Offset base 12 13,807.81 -
313 312 Published plb + Offset full 13 13,759.81 −48
324 312 Published plb + Offset IIV base 13 13,721.88 −85.93
325 324 Published plb + Offset IIV full 14 13,712.10 −9.78
326 312 Published plb + Time linear base 12 13,843.79 35.98
327 326 Published plb + Time linear full 13 13,834.31 −9.49
328 326 Published plb + Time linear IIV base 13 13,629.18 −214.61
329 328 Published plb + Time linear IIV full 14 13,627.83 −1.35
Data modified by the addition of offset IIV drug model, TDE = 2 with 30%CV
304 NA Published plb + Offset base 12 13,822.38 -
305 304 Published plb + Offset full 13 13,776.66 −45.72
302 304 Published plb + Offset IIV base 13 13,732.38 −90
303 304 Published plb + Offset IIV full 14 13,722.67 −99.7
306 302 Published plb + Time linear base 12 13,857.50 125.11
307 306 Published plb + Time linear full 13 13,848.43 −9.07
308 306 Published plb + Time linear IIV base 13 13,641.31 −216.19
309 308 Published plb + Time linear IIV full 14 13,639.74 −1.57
Data modified by the addition of time-linear drug model, TDE = 2
816 NA Published plb + Offset base 12 13,766.88 -
817 816 Published plb + Offset full 13 13,766.46 −0.42
818 816 Published plb + Offset IIV base 13 13,690.94 −75.94
819 818 Published plb + Offset IIV full 14 13,689.29 −1.64
812 816 Published plb + Time linear base 12 13,768.85 1.97
813 812 Published plb + Time linear full 13 13,765.70 −3.15
808 812 Published plb + Time linear IIV base 13 13,557.07 −211.77
809 808 Published plb + Time linear IIV full 14 13,556.76 −0.32
Data modified by the addition of time-linear IIV drug model, TDE = 2 with 30%CV
852 NA Published plb + Offset base 12 13,769.77 -
853 852 Published plb + Offset full 13 13,769.39 −0.38
854 852 Published plb + Offset IIV base 13 13,693.59 −76.18
855 854 Published plb + Offset IIV full 14 13,691.98 −1.61
850 852 Published plb + Time linear base 12 13,771.71 1.94
851 850 Published plb + Time linear full 13 13,768.82 −2.9
762 850 Published plb + Time linear IIV base 13 13,558.84 −212.87
763 762 Published plb + Time linear IIV full 14 13,558.49 −0.35
Data modified by the addition of offset drug model, TDE = 8
552 NA Published plb + Offset base 12 14,303.38 -
553 552 Published plb + Offset full 13 13,710.38 −593.01
554 552 Published plb + Offset IIV base 13 14,283.48 −19.9
555 554 Published plb + Offset IIV full 14 13,700.30 −583.18
556 552 Published plb + Time linear base 12 15,040.48 737.1
557 556 Published plb + Time linear full 13 14,854.14 −186.34
558 556 Published plb + Time linear IIV base 13 14,933.37 −107.11
559 558 Published plb + Time linear IIV full 14 14,776.40 −156.97
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Table A4. Cont.

Run_nb Ref Description Prm_nb OFV dOFV

Data modified by the addition of offset IIV drug model, TDE = 8 with 30%CV
524 NA Published plb + Offset base 12 14,402.80 -
525 524 Published plb + Offset full 13 13,911.77 −491.03
522 524 Published plb + Offset IIV base 13 14,328.56 −74.24
523 522 Published plb + Offset IIV full 14 13,845.67 −482.89
526 522 Published plb + Time linear base 12 15,144.65 816.08
527 526 Published plb + Time linear full 13 14,984.37 −160.27
528 526 Published plb + Time linear IIV base 13 15,027.12 −117.52
529 528 Published plb + Time linear IIV full 14 14,877.69 −149.43
Data modified by the addition of time-linear drug model, TDE = 8
844 NA Published plb + Offset base 12 13,893.24 -
845 844 Published plb + Offset full 13 13,875.75 −17.48
846 844 Published plb + Offset IIV base 13 13,818.27 −74.96
847 846 Published plb + Offset IIV full 14 13,816.83 −1.44
842 844 Published plb + Time linear base 12 13,885.17 −8.06
843 842 Published plb + Time linear full 13 13,762.09 −123.08
848 842 Published plb + Time linear IIV base 13 13,783.23 −101.94
849 848 Published plb + Time linear IIV full 14 13,687.60 −95.63
Data modified by the addition of time-linear IIV drug model, TDE = 8 with 30%CV
784 NA Published plb + Offset base 12 13,915.84 -
785 784 Published plb + Offset full 13 13,899.91 −15.93
786 784 Published plb + Offset IIV base 13 13,840.96 −74.88
787 786 Published plb + Offset IIV full 14 13,839.97 −0.99
788 784 Published plb + Time linear base 12 13,907.35 −8.49
789 788 Published plb + Time linear full 13 13,795.58 −111.77
782 788 Published plb + Time linear IIV base 13 13,798.92 −108.43
783 782 Published plb + Time linear IIV full 14 13,705.10 −93.82
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